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Final Question 3 
 
Given the simplistic nature of the problem, I thought this would be a good opportunity to 
compare the performances of a linear and logistic model on a classification problem. It is 
uncommon to see linear models used in classification problems, mainly because the output of a 
linear model is non-probabilistic, and therefore makes it difficult to say which category the data 
fits into. A logistic model on the other hand, takes the same structure of the linear model, and 
utilizes an activation function that turns our nonsense output into one that is a probability of 
being in a certain class. For this problem I took data from Class A to be represented by a 0, and 
data from Class B to be represented as a 1. Given how little data we were provided, I wasn’t 
expecting my networks to learn a whole lot, or even work well at all. Indeed, when I first tried 
this problem, the small dataset led to some nonsense results. To overcome this, I tried my hand at 
some data augmentation, and the results were much more satisfying. 
 
Data Augmentation 
 
The original data that was given only contained letters drawn on a 5x5 pixel grid, leaving 25 total 
pixels that I could give my networks (see Figure 1a). To improve this data set, I expanded the 
size of each image to 11x111, 121 total pixels, and added some random noise around the outside 
of the letter (see Figure 1b). I did this 100 times for each letter, so now my 10 5x5 images turned 
into 1000 11x11 images. Obviously, there would still be a risk to overfitting if the generated 
noise wasn’t sufficient enough, which is the main reason I didn’t use even more copies. If I 
generated too many copies, given the limited number of combinations for random noise, some 
samples may start to repeat. I also made sure to shuffle the data around each time the model was 
trained to make sure there wasn’t any accidental overfitting I could easily prevent. 
 

    
 
 

 
1 No real reason I chose this size other than it allowed me to use the outer two layers for noise and keep the area 
around the letter intact.  

Figure 1a. Original Data Figure 1b. Augmented Data 



Linear Regression 
 
The first model I constructed was a linear regression model. Given our input size of 121 (121 
pixels in an 11x11 image), I needed to generate 121 random weights (each close to zero) 
associated to each input. The output was calculated by simply taking a linear combination all the 
weights and corresponding inputs multiplied together: 
 

!"#$"# = 	' ∙ 	 )*$"# 
 
Where ' ∙ 	 )*$"# is a dot product of the weight and input vectors. The cost is taken to be the 
difference squared between the output and actual class value (either 0 or 1): 
 

+,-# = 	 (!"#$"# − 01#"23)! 
 
From these two equations, it is fairly easy to calculate the gradient: 
 

∇+ = 6+
6' = 	2 ∗ (!"#$"# − 01#"23) ∗ )*$"# 

 
And I can apply stochastic gradient descent to our weights: 
 

'"#$% = '&'((#"% − α ∗ ∇+ 
 
Where α is the learning rate of the model, a parameter I had to mess around with to get results 
close-ish to 0 and 1 (again, not expecting this to work perfectly, but I tried to at least have it 
make some sense). Using this method, I updated the weights after every image to get my final 
results. As expected, the results themselves are a little difficult to analyze. Figures 2a and 2b 
show two results for two different training sessions, with the reminder that we initialized Class A 
with 0, and Class B with 1. Not many of the results are very close to 0, and in both scenarios, L 
was found to have an output greater than 1. At first this makes me think the model is indeed just 
useless, however I decided to run a bunch of training and testing sessions, then average the 
outputs to see what the expected value of each test data point is. The results can be seen in Figure 
3. 
 

    
 
 
 

Figure 2a. Testing Results 1 Figure 2a. Testing Results 2 



The results below give me an idea of what the network gives as an output on average for a given 
training session. Given this information, one of the conclusions I think to draw is that the 
network is saying K is mostly different than all of the other letters. Whatever class it belongs to 
(potentially Class A since it is closer to 0?), it is definitely not grouped with L. To me this makes 
some deal of sense, as K has 2 long diagonals, while L has only two straight lines. It may be 
recognizing these diagonal components in the other letters M, N, and O as well (even if it is only 
a little), and these signatures draw the result closer to 0. It is worth noticing that only Class A has 
diagonal lines in its letters, as Class B only has straight line components. It is hard to say what 
exactly the network is classifying each letter as, but if I had to make a guess, I would say it is 
calling K and M Class As, and L, N, and O Class Bs. This may or may not be what the network 
is picking up on, and it would be worth trying to improve our analysis by applying logistic 
regression.  
 

 
 
 
Logistic Regression 
 
The second model I constructed was a logistic regression model in the hopes that it would do 
better than the linear model. Given the same input size of 121 (121 pixels in an 11x11 image), I 
again needed to generate 121 random weights (each close to zero) associated to each input. This 
time, the linear combination of weights and corresponding inputs was put into a sigmoid 
activation function: 
 

!"#$"# = 	: ;' ∙ 	 )*$"#< 
 
Where ' ∙ 	 )*$"# is again the dot product of the weight and input vectors, and : is the sigmoid 
function. This now squishes the output between 0 and 1, reminiscent of probabilities, something 
much easier to interpret than the output of the linear model. This time the cost is taken to be: 
 

+,-# = 	−= ∗ ln[,"#$"#] − (1 − =) ∗ ln[1 − ,"#$"#] 
 
Where y is the true value of the input data, and the nice thing about this equation is that much 
like the linear model, there is a simple formula for the gradient: 
 

∇+ = 6+
6' = 	 (!"#$"# − 01#"23) ∗ )*$"# 

 
And I can apply stochastic gradient descent to our weights: 
 

'"#$% = '&'((#"% − α ∗ ∇+ 

Figure 3. Average Testing Results 



 
Where α is again the learning rate of the model (I used the same one I found for the linear model 
to keep the comparison fair). Trained on the same data I used for the linear model, Figures 4a 
and 4b show two results for two different training sessions. Immediately I can see some 
differences and even some similarities between these results and the linear model’s results, but 
first I again ran an average over many training sessions (see Figure 5).   
 
 

    
 
 
 

The biggest thing to notice is how close to 0 L is in this model. In the linear model, the output for 
L was higher than any of the other letters in the test set, which almost seemed to indicate that it 
was being marked as Class A. The results below seem to indicate the opposite conclusion, as its 
value is extremely close to 0. If we draw a cutoff at 0.5, then the model is telling us that K and M 
are Class B, and L, N, and O are Class A. This is exactly the opposite conclusion I drew for the 
linear model’s results, however this time I feel more confident with my analysis. The results this 
time seem to make sense for pretty much every letter. For example, I could see structural 
similarities in the shapes of K2, H, and F, and O with D and C3. The main reason being what the 
logistic model’s outputs actually represent. The output of the linear model is not constraint to lie 
in a certain range of values, which makes it really difficult to say with certainty what the results 
actually mean. In the case of the logistic model, the output is being fed into a function that forces 
the value to be between 0 and 1, synonymous with probability. Given our only two classes are 
Class A = 0 and Class B = 1, if the output is close to 0, it is predicting Class A, and if the output 
is close to 1, it is predicting Class B. The closer the output is to these values the more certain the 
network is. In the case of N and O, the network is classifying them both as Class A, however it is 
far more uncertain of these than it is of K, L or M.  

 

 
 
 

 
2 Perhaps the linear model didn’t actually recognize diagonal features that K shared with Class A in the first place. 
3 This is one of the main reasons I am more comfortable with the logistic model’s analysis. If anything was to 
belong to Class A it would be O. 

Figure 4a. Testing Results 1 Figure 4a. Testing Results 1 

Figure 5. Average Testing Results 



I am sure there are some flaws with both of the networks, however given the scale of the 
problem and the lack of knowledge where the test data actually belongs, there were bound to be 
errors. I would conclude, however, that the use of a logistic regression model is much more 
useful for a classification problem than a linear regression model. There may be ways to interpret 
the linear model’s results in a meaningful way but given how simple a logistic model makes the 
problem, it is the superior option.  



In [1020]: import numpy as np
import matplotlib.pyplot as plt
import random
import time

Initialize Data



In [1021]: ### Class A ### 

A = np.array([[0,0,1,0,0], 
    [0,1,0,1,0], 
    [1,0,0,0,1], 
    [1,1,1,1,1], 
    [1,0,0,0,1]]) 

B = np.array([[1,1,1,0,0], 
    [1,0,0,1,0], 
    [1,1,1,0,0], 
    [1,0,0,1,0], 
    [1,1,1,0,0]]) 

C = np.array([[0,1,1,0,0], 
    [1,0,0,1,0], 
    [1,0,0,0,0], 
    [1,0,0,1,0], 
    [0,1,1,0,0]]) 

D = np.array([[1,1,1,0,0], 
    [1,0,0,1,0], 
    [1,0,0,1,0], 
    [1,0,0,1,0], 
    [1,1,1,0,0]]) 

E = np.array([[1,1,1,1,0], 
    [1,0,0,0,0], 
    [1,1,1,1,0], 
    [1,0,0,0,0], 
    [1,1,1,1,0]]) 

#### Class B ### 

F = np.array([[1,1,1,1,0], 
    [1,0,0,0,0], 
    [1,1,1,0,0], 
    [1,0,0,0,0], 
    [1,0,0,0,0]]) 

G = np.array([[1,1,1,1,0], 
    [1,0,0,1,0], 
    [1,0,0,0,0], 
    [1,0,1,1,1], 
    [1,1,1,1,0]]) 

H = np.array([[1,0,0,0,1], 
    [1,0,0,0,1], 
    [1,1,1,1,1], 
    [1,0,0,0,1], 
    [1,0,0,0,1]]) 

I = np.array([[1,1,1,1,1], 
    [0,0,1,0,0], 
    [0,0,1,0,0], 
    [0,0,1,0,0], 



    [1,1,1,1,1]]) 

J = np.array([[1,1,1,1,0], 
    [0,1,0,0,0], 
    [0,1,0,0,0], 
    [0,1,0,1,0], 
    [0,1,1,1,0]]) 

### Test Data ### 

K = np.array([[1,0,0,1,0], 
    [1,0,1,0,0], 
    [1,1,0,0,0], 
    [1,0,1,0,0], 
    [1,0,0,1,0]])

L = np.array([[1,0,0,0,0], 
    [1,0,0,0,0], 
    [1,0,0,0,0], 
    [1,0,0,0,0], 
    [1,1,1,1,0]])

M = np.array([[1,1,0,1,1], 
    [1,0,1,0,1], 
    [1,0,1,0,1], 
    [1,0,0,0,1], 
    [1,0,0,0,1]])

N = np.array([[1,1,0,0,1], 
    [1,1,1,0,1], 
    [1,0,1,1,1], 
    [1,0,0,1,1], 
    [1,0,0,0,1]])

O = np.array([[0,1,1,1,0], 
    [1,0,0,0,1], 
    [1,0,0,0,1], 
    [1,0,0,0,1], 
    [0,1,1,1,0]]) 

Data = []
# stored as (image, label)
Data.append((A,0))
Data.append((B,0))
Data.append((C,0))
Data.append((D,0))
Data.append((E,0)) 

Data.append((F,1))
Data.append((G,1))
Data.append((H,1))
Data.append((I,1))
Data.append((J,1)) 

Data = np.array(Data) 

test_data = []
test_data.append((K, 'K'))
test_data.append((L, 'L'))
test_data.append((M, 'M'))
test_data.append((N, 'N'))



test_data.append((O, 'O')) 

test_data = np.array(test_data)

In [1022]: plt.imshow(Data[0][0], cmap=plt.cm.binary)
plt.show()

Data Augmentation:



In [1023]: # Expand the size of the images and add some 'noise' 

NewData = []
for item in Data: 
   letter = item[0] 
   tag = item[1] 
    
   duplicates = 0 
    
   #create a number of duplicates  
   while duplicates < 100: 
       x = np.zeros((11,11)) 
        
       #put the letter in the middle of the bigger array 
       x[3:8,3:8] = letter 
        
       step = 0 
        
       #create random noise 
       while step < 15: 
           i = np.random.choice([0,1,9,10]) 
           j = np.random.choice([0,1,2,3,4,5,6,7,8,9,10]) 
            
           if x[i][j] == 1: 
               continue 
           else: 
               x[i][j] = 1 
               step += 1 
                
       step = 0 
       while step < 10: 
           i = np.random.choice([0,1,2,3,4,5,6,7,8,9,10]) 
           j = np.random.choice([0,1,9,10]) 

           if x[i][j] == 1: 
               continue 
           else: 
               x[i][j] = 1 
               step += 1 
        
       NewData.append((x, tag)) 
       duplicates += 1 
        

#put the test data in the same bigger image format
NewTestData = []
for item in test_data: 
   x = np.zeros((11,11)) 
   x[3:8,3:8] = item[0] 
   NewTestData.append((x, item[1]))



In [1024]: print('Now we have', len(NewData), 'images for our networks to use')
plt.imshow(NewData[0][0], cmap=plt.cm.binary)
plt.show()

Linear Regression

Now we have 1000 images for our networks to use 



In [1025]: def initialize_weights(): 
   weights = np.random.rand(1,121) 
   return weights 

def linear_cost(output_layer, label): 
   cost = np.square(output_layer - label) 
   return cost 

def linear_derivs(input_layer, output_layer, label, weights): 
   weight_derivs = (output_layer - label)*input_layer  
   return weight_derivs 

def linear_output(input_layer, weights): 
   output_layer = np.dot(weights,input_layer)     
   return output_layer 

def train_model(Data): 
   weights = initialize_weights() 
    
   np.random.shuffle(Data) 
    
   for item in Data: 
       #Preprocess 
       input_data = item[0] 
       input_layer = input_data.flatten() 
       label = item[1] 

       #Calculate our layers 
       output_layer = linear_output(input_layer, weights) 

       #Calculate Cost 
       cost = linear_cost(output_layer, label) 

       #Calculate weight derivatives 
       weight_derivs = linear_derivs(input_layer, output_layer, label, 

weights)          

       weights = weights - 0.05*weight_derivs 
                        
   return weights 

def TestModel(test_data, weights): 
   results = [] 
   for item in test_data: 
       x = item[0].flatten() 
       output_layer = abs(linear_output(x,weights)) 
            
       results.append(output_layer[0]) 
   return results

In [1026]: weights = train_model(NewData)



In [1027]: results = TestModel(NewTestData, weights)
print("0 = Class A, 1 = Class B")
print()
print("K:",results[0])
print("L:",results[1])
print("M:",results[2])
print("N:",results[3])
print("O:",results[4])

In [1028]: #get an average over a bunch of training sessions
results = np.zeros(5)
for i in range(50): 
   weights = train_model(NewData) 
   results += TestModel(NewTestData, weights) 
    

results = (results/50)
print("K:",results[0])
print("L:",results[1])
print("M:",results[2])
print("N:",results[3])
print("O:",results[4])

Logistic Regression

0 = Class A, 1 = Class B 
 
K: 0.08809749094316827 
L: 1.5949090742815057 
M: 0.6739724781713333 
N: 0.27380102299744635 
O: 0.24739313387010187 

K: 0.6000170648557712 
L: 1.2182755054265357 
M: 0.6081753399461132 
N: 0.9486863011010143 
O: 1.2549434538653776 



In [1029]: # Using initialize_weights from above 

def sigmoid(x): 
   result = 1/(1 + np.exp(-x)) 
   return result 

def logistic_cost(output_layer, label): 
   # using a different cost function here  
   cost = -label*np.log(sigmoid(output_layer)) - (1-label)*np.log(1-sig

moid(output_layer)) 
   return cost 

def logistic_derivs(input_layer, output_layer, label, weights): 
   #the 2 gets absorbed into the learning rate 
   weight_derivs = (output_layer - label)*input_layer #calculate da/dw 

   return weight_derivs 

def logistic_layers(input_layer, weights): 
   output_layer = sigmoid(np.dot(weights,input_layer)) 
    
   return output_layer 

def train_model(Data): 
   weights = initialize_weights() 
    
   np.random.shuffle(Data) 
    
   for item in Data: 
       #Preprocess 
       input_data = item[0] 
       input_layer = input_data.flatten() 
       label = item[1] 

       #Calculate our layers 
       output_layer = logistic_layers(input_layer, weights) 
        
       #Calculate Cost 
       cost = logistic_cost(output_layer, label) 

       #Calculate weight derivatives 
       weight_derivs = logistic_derivs(input_layer, output_layer, label

, weights)          

       #update weights 
       weights = weights - 0.05*weight_derivs 

                        
   return weights 

def TestModel(test_data, weights): 
   results = [] 
   for item in test_data: 
       x = item[0].flatten() 
       output_layer = sigmoid(np.dot(weights,x)) 



       results.append(output_layer[0]) 
   return results

In [1030]: weights2 = train_model(NewData)

In [1031]: results = TestModel(NewTestData, weights2)
print("0 = Class A, 1 = Class B")
print()
print("K:",results[0])
print("L:",results[1])
print("M:",results[2])
print("N:",results[3])
print("O:",results[4])

In [1032]: #get an average over a bunch of training sessions
results = np.zeros(5)
for i in range(50): 
   weights = train_model(NewData) 
   results += TestModel(NewTestData, weights) 
    

results = (results/50)
print("K:",results[0])
print("L:",results[1])
print("M:",results[2])
print("N:",results[3])
print("O:",results[4])

In [ ]:   

0 = Class A, 1 = Class B 
 
K: 0.9478577009862261 
L: 0.06900699544926335 
M: 0.9895743242348853 
N: 0.6765903812712191 
O: 0.3717894803790008 

K: 0.9216579885567561 
L: 0.05394185985276019 
M: 0.9804092755926073 
N: 0.4846045488064354 
O: 0.34781232487495095 


